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ABSTRACT: This study presents an approach for modeling and predicting the cutting zone temperature, surface roughness 

and cutting time when dry turning S45C mild steel is used with SPG 422 tungsten carbide tools. The suggested system is 

based on Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) intelligent algorithms.  S45C Mild steel 

bars are machined at different cutting conditions (cutting speeds, feed rates and depths of cut) without the use of cutting 

fluid. AIS and PSO results have been experimentally trained to find cutting zone temperature, surface roughness and cutting 

time by using the parameters directly on a CNC turning machine. The tests were conducted on a CNC turning machine type 

HAAS AUTOMATION SL 20. An infrared camera (Flir E60), a lathe tool dynamometer model USL-15 and a portable 

surface roughness device were respectively used to measure temperatures, cutting forces and surface roughness.  The results 

predicted by AIS and PSO were compared with the experimental values derived from the testing data set. Testing results 

indicated that the predicted and experimental results are approximately similar and that suggested system can be used to 

estimate the cutting temperature, surface roughness and cutting time in the turning operation with high accuracy. 

Experimental results showed that the average accuracy of the AIS algorithm is 94.37 %, whereas that of the PSO algorithm 

is 92.84 % which indicated that the two percentages are convergent.  
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1.0 INTRODUCTION 
Selecting the ideal cutting parameters for every operating 

process is among the modern technological challenges in 

enhancing machining product quality, reducing operation 

costs, and increasing the effectiveness and productivity of 

cutting operations as in [1,5].. 

Others [6] studied on the optimization of cutting parameters 

(which are cutting speed, feed rate and depth of cut as well) 

to aid in determining the optimal surface roughness and 

work piece surface temperature of AISI 1020 work material 

during the turning operation by using the Taguchi method. 

Temperature was measured by using the Stefan-Boltzmann 

law and an infrared thermometer was (OS534E) used to 

determine the emissivity of the radiation element. The 

results indicated that determining the work piece surface 

temperature by using a thermometer is an effective approach 

and is a good indicator for optimizing cutting parameters 

Elsewhere [7] authors used the Taguchi method to minimize 

the tool-chip interface temperature with a tool-work 

thermocouple technique. A cutting tool was used for work 

piece Č1730 (EN C60) steel and cemented carbide is 

inserted to obtain the experimental results. The analysis 

indicated that cutting speed is the most significant parameter 

affecting cutting temperature. 

 Authors in [8] studied on using of the interface system 

ANFIS with PSO learning. This system can be used to 

calculate the cutting zone temperature and surface roughness 

of AISI304 austenitic stainless steel by using a multi-layer 

coated tungsten carbide cutting tool. The system is trained 

by using data on cutting parameters (cutting speed, feed rate 

and cutting force) collected during the experiment. The 

results showed that the use of this system can result in 

producing good quality product with raised productivity and 

minimal cost 

2.0 Optimization and Analysis by AIS, and PSO 

2.1 Objective Functions (O.F) 

Three types of objective functions used in this study:-      

2.1.1 Cutting area temperature objective Function 
The first O.F is used to lessen the cutting zone temperature, 

which clearly shows the summation of shear and chip-tool 

zone temperatures, as SHOWN in Eq. (1) [9].: 

 Tsi = [ 0.9 * Zs * w1* t1 * Vc * cos(j) / (sin(ɸ) * cos(ɸ - j) 

* w1 * t1 * Vc * M * L +N] + [0.6786 * Fc*sin(j) + 

(Ft *cos(j)] / (th * w) * sqrt ((Vc * t1 / t2 * (th) 

/ (M * L) / a]                                (1) 

Where;  Tsi :- cutting zone temperature (C
о
), Zs:-mean shear 

strength (N/m
2
), w1:-depth of cut (m), t1:-feed (m),Vc:-

cutting velocity  (m/s), j:-cutting tool rake angle (Deg), ɸ:-

shear plane angle (Deg), M:-work piece material density 

(Kg/m
3
), L:-specific heat of work (J/Kg.C

о
),N:-ambient 

temperature (C
о
) equal to 25 C

о
 , Fc:-main cutting force (N), 

Ft :-feed force (N), th:-thermal conductivity of work 

(W/m.C
о
), t2:- chip thickness (m), a:-chip contact length (m). 

The shear plane angle can be calculated as shown in Eq. (2): 

ɸ = tan
-1

 (r cos (j) / 1–r sin (j))                                    (2) 

Where; r:- chip ratio ≤ 1,   j:- cutting tool rake angle 

2.1.2 Surface Roughness Objective Function 

This O.F  is used to minimize the work piece surface 

roughness (Ra) as SHOWN in Eq. (3) [10].: 

   Ra = 0.032 * f 
2
 / r1                                 (3) 

Where; Ra:-  the transverse roughness (µm), f :- the feed rate 

between successive cuts (m),, r1:- the cutting tool tip radius 

(m).  

2.1.3 Cutting Time Objective Function 
The third O.F  is used to calculate the minimum operating 

cutting time (Tm )  as shwon  in  Eq. (4)[11].: 

      Tm = Lf / f * Nw                                   (4) 

Where;  Tm:-  the machining cutting time (min), Lf::- length 

of the cutting surface (m), f:- feed rate (m),  Nw:-  the  

rotational speed of the work piece (rev/min). 
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2.2 Optimization by AIS   

   AIS used the clonal selection terminology such as antibody 

(cutting variable), antigen and clonal  

for finding the optimum cutting parameters. This 

methodology is dependent on three principles; proliferation 

of cells, generation of diverse antibodies and antigenic 

receptors handling.  Increasing the cell numbers (Nc), which 

represents the ideal solutions achieves is shown as Eq. (5) 

[12].:- 

       Nc = Ʃ round ( β * N)                          (5)   

Where; β:- the multiplying factor equal to 1, N:- the total 

number of antibodies. The number of antibodies after 

mutation (Abi) which represents the cutting variables can be 

calculated as shown in Eq. 6: 

Abi = Abi * [ 1 + α * Ni * (0 , 1)          (6). 

Where; α;-  the step size equal to 1,  Ni:- random variable. 

The AIS parameters for simulation operation are as follows; 

number of variables = 5, population size = 30, and number of 

iterations = 450. The optimum cutting temperature, surface 

roughness, and cutting time results of AIS are shown in 

Table 1:- 
Table 1: Optimum results by AIS intelligent algorithm 
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2.09 56.3 53.4 2.50 186 100 0.15 0.3 100 

2.51 54.6 29.6 1.06 202 100 0.1 0.6 150 

7.25 51.5 72.2 0.49 110 60 0.06 0.3 200 

2.82 53 53.4 2.50 175 60 0.15 0.6 250 

4.20 52.3 53.4 1.45 165 60 0.1 0.3 300 

6.41 53.4 
31.6

0 
1.06 166 40 0.1 0.8 350 

4.22 51.5 47.5 2.50 153 40 0.15 0.6 400 

13.3 50.2 47.5 0.26 150 40 0.05 0.6 450 

 

Figures 1,2 and 3 show the ideal temperature, surface 

roughness and cutting time of AIS:-  

Whereas those obtained equilibrium among all parameters 

are found in epoch 300 as shown in Table 2:- 
Table 2: Optimal cutting parameters of AIS 
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  2.3 Optimization by PSO  

In PSO algorithm, each particle (solution of the problem) 

flies through the multi-dimensional search space. The 

particle velocity and position are constantly updated 

according to the best, previous or neighbor’s performance as 

well as the best performance of the particles in the entire 

population clustering large dataset [13]. The main procedure 

of this algorithm as shown in Eq. 7 [14]:- 

Vi 
k+1 

= w * vi
 k

 + a1* rand1 * ( pbesti – xi
 k 

) + a2 * rand2 * ( 

gbesti – xi
 k 

)                     (7) 

Where; Vi
k
:- velocity of particle i at iteration k, xi

k
:- current 

position of particle i at iteration k, pbesti :- personal best of 

particle i, gbesti :- best position in the neighborhood, rand:-  

random number between 0 and 1, w:- weighting function, a1, 

a2:- learning rate. The PSO parameters for the simulation 

operation are as follows; number of variables = 5, population 

size = 30, number of iteration generations = 450, a1= 0.01 

and a2= 0.01. The optimum cutting temperature, surface 

roughness, and cutting time obtained by the PSO are shown 

in Table 3:- 
Table 3: Optimum results by PSO algorithm 
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4.21 56.4 50 2.5 153 40 0.15 0.6 400 

 13.3 55.6 47.5 0.2 151 40 0.05 0.6 450 

Table 4: Optimal cutting parameters of PSO 
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Table 5: Chemical composition of the work piece material 

Density 
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strength 

(N/m2) 

Specific 

heat of 

work 

(J/Kg.Cо) 

Thermal 

conductivity 

of   work 

(W/m.Cо) 

7800 200 340 

*106 

510 45- 65 

Table 6: Mechanical properties of work piece material 
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Figures 4.5 and 6 show the ideal temperature, surface 

roughness and time of PSO Intelligent algorithm 

respectively:- 
Whereas those obtained equilibrium among all parameters 

are found in epochs 300 as shown in Table 4:  

3.0 Experimental Set Up 

To verify the simulation results, the optimum parameters 

obtained by the AIS, and PSO were used as input for the 

CNC turning machine. After the completion of the turning 

operation, the actual and simulation results were compared. 

The tests were then conducted on the CNC turning machine 

type HAAS AUTOMATION SL 20. A mild steel work piece 

material (S45C) rod with a diameter of 50 mm and length of 

160 mm, as well as a tungsten carbide insert cutting tool 

(WC) (SPG422) with a cutting tool rake angle equal to 15º  
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Figure: 1 Optimum cutting temperature 

 
Figure 2: Optimum surface roughness 

 

Figure 3: Optimum cutting time 

 

was used in the experiment. The chemical composition and 

mechanical properties of the mild steel material are shown in 

Tables 5 and 6 respectively:- 

A Flir E60 infrared thermal image camera and a 

dynamometer model USL-15 lathe tool with a capacity of 

500Kg in the x , y, and z directions were used to measure the 

cutting temperature and  cutting force as shown in Figure 7 , 

whereas a portable surface roughness device was used to 

work piece roughness measurement.     

The experimental set up used in this study  

has been illustrated in Figure 8:- 

 

4.0 RESULTS AND DISCUSSION 
 4.1 Comparison of experimental and simulation results 

 

 
Figure 4: Optimum cutting temperature 

Figure 5: Optimum surface roughness 

Figure 6: Optimum cutting time 
The experimental and simulation results of AIS and PSO are 

compared, and the ideal algorithm that gives better results is 

obtained as shown in Tables 7 and 8 respectively:- 

The average accuracy percentage between the simulation 

and actual results of PSO is (92.84%), AIS algorithm is 

(94.37 %), as shown in Figures 9, and 10 respectively:- 

 

 
Figure: 7 Flir E60 Infrared Thermal Camera (left) and Force 

dynamometer (right) 
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Table7: Comparison between simulation and actual results of AIS 
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98.63%  90%   94.5%        

Table 8:  Comparison between simulation and actual results of PSO 
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Figure 8: Experimental set up 

 

 

 

 

 

 

 
Figure 9: The accuracy percentage of PSO 

 

Figure 10: The accuracy percentage of PSO 

 The relationships among cutting parameters continually 

changed depending on the cutting operation conditions. The 

changes in the values  

 of some parameters may cause changes in the values of 

other parameters.  

The results show that an increase in cutting velocity causes 

an increase in cutting temperature and surface roughness, but 

a decrease in cutting time. Meanwhile, an increase in feed 

rate causes an increase in both temperature and surface 

Data acquisition Data acquisition 
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roughness but a decrease in cutting time. The shear plane 

angle also affects the cutting operation, such that its increase 

results in a significant drop in cutting temperature and 

cutting forces. The change in thermal conductivity is simple 

and varies between (51 and 59 w/m.c). 

 

5.  CONCLUSIONS 

The simultaneous optimization of many different parameters 

is a difficult problem in the manufacturing and optimization 

field. This study is presented to a PSO and AIS intelligent 

system to predict cutting zone temperature, surface 

roughness, and cutting time accurately in the dry turning of 

S45C mild steel with the use of SPG 422 tungsten carbide 

tools. PSO, and AIS were used to compute for the most 

suitable and ideal parameters. All the Cutting speed, feed 

rate, depth of cut, cutting force, and feed force data were 

used as model variables for PSO and AIS.  The predicting 

capability of AIS was found to be 94.50% for cutting 

temperature, 90% for surface roughness, and 98.63% for 

cutting time. Meanwhile, the predicting capability of PSO 

was found to be 95.11% for cutting temperature, 88.56% for 

surface roughness, and 94.85% for cutting time. The results 

showed good agreement between the simulation results by 

AIS, and PSO and the actual results collected by the CNC 

turning machine. The average accuracy of the AIS algorithm 

was 94.37 %, whereas that of the PSO algorithm was 92.84 

% which indicates that the two percentages are convergent. 

The proposed system was found to have shown satisfactory 

performance in predicting the ideal cutting temperature, 

surface roughness and cutting time. The results of AIS and 

PSO were found to be convergent, which confirms the 

robustness of the proposed system. 
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